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a b s t r a c t

Corrosion surface damage in the form of pitting and micro-cracks is observed in many metals. Cracks usu-
ally initiate from the pits and grow under cyclic stresses and eventually lead to material failure. An image
analysis based on wavelet transforms and fractals was used to study the corrosion morphology of nickel
aluminum bronze metal under varying corrosion conditions and applied stresses. Image feature param-
eters were extracted and analyzed to classify the pits/cracks in the metal samples. The results obtained
indicate that classification of pits/cracks is possible with image analysis and may be used for correlating
service/failure conditions based on corrosion morphology.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering components made from nickel aluminum bronze
(NAB) metal are being used in the Navy’s ship and propeller com-
ponents due to their high toughness. However, this metal is sub-
jected to pits and stress corrosion cracking due to the operating
conditions of salt water environment. In order to reduce the main-
tenance requirements, expedite repair, and extend the life of naval
nickel aluminum bronze components, engineering studies are
being carried out to investigate the mechanism of stress corrosion
crack initiation through experiments and modeling.

Pitting and stress corrosion cracking are known to be some of
the major damage mechanisms affecting the integrity of NAB
materials and structures in nuclear and naval engineering. Corro-
sion pits generally initiate due to some chemical or physical heter-
ogeneity at the surface, such as inclusions, second phase particles,
flaws, mechanical damage, or dislocations. Many NAB alloys con-
tain numerous constituent particles, which play an important role
in corrosion pit formation [1–5]. To better understand particle-in-
duced pitting corrosion, optical microscopy, Scanning Electron
Microscopy (SEM) and Transmission Electron Microscopy (TEM)
techniques have been used. Due to operating and special service
environments (e.g. saltwater), corrosion pits and stress corrosion
cracking are readily formed between the constituent particles
and the surrounding matrix in these alloys [5].

Micro-cracks usually initiate from the corrosion pit sites in the
material. Under the interaction of cyclic load and the corrosive
environment, cyclic loading facilitates the pitting process, and
corrosion pits, acting as geometrical discontinuities, lead to crack
initiation and propagation and then final failure [6–9]. Corrosion
can lead to accelerated failure of structural components under fa-
tigue loading conditions. Understanding and predicting corrosion
damage morphology in the form of pits/cracks is therefore very
important for the structural integrity of materials and structures.
Electrochemical probe techniques such as Scanning Reference Elec-
trode Technique (SRET), Scanning Vibrating Electrode Technique
(SVET), and Localized Impedance Spectroscopy (LEIS) [10–13] have
been used for electrochemical measurements at the metal surface.
There are no probe related techniques that quantitatively assess
the corrosion morphology in the form of pits and stress corrosion
cracking in metals. Recently, Pidaparti et al. [14,15] developed a
computational methodology to predict stresses around pits and
found that pit induced stresses reaches a plateau after certain cor-
rosion time and may lead to crack initiation after that, and this
phenomena changes with corrosion environment.

Image analysis has been used to characterize corrosion mor-
phology in materials subjected to a variety of environmental
conditions. Kapsalas et al. [16] proposed a method to detect corro-
sion size and topology in stonework surfaces by testing and eval-
uating image segmentation schemes. They have showed that
their results are in good agreement with assessments based on
chemical analyses performed on the same surfaces. Choi et al.
[17] have analyzed the corrosion surface damage using digital
image processing techniques. They employed HIS model interpre-
tation, co-occurrence matrix, and multidimensional scaling proce-
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dure to characterize images by three categories of colour, texture,
and shape features. Wang et al. [18] used wavelet packet decom-
position energies of images at different wavelet sub-bands as fea-
tures to study the atmospheric corrosion behavior of zinc samples.
They acquired a relationship between the selected image features
and the corrosion weight loss. Tao et al. [19] analyzed the atmo-
spheric corrosion of field exposure high strength aluminum alloys.
They used wavelet packed decomposition energies at different
sub-bands to estimate the corrosion loss of five types of aluminum
alloys. It was found that the values of sub-image energies de-
creased with increasing exposure time. There are no studies in
the literature on classification of pits/cracks in NAB metals under
combined corrosion and cyclic stresses.

In order to qualitatively and quantitatively characterize the
early stage damage mechanisms in NAB metals under corrosion
and cyclic stresses, image analysis of corrosion morphology may
be used as a tool to predict the nucleation of cracks resulting from
initiation and growth of pits. In this study, image analysis based on
wavelet transforms and fractals was used to study the corrosion
morphology of Nickel Aluminum Bronze metal under varying cor-
rosion conditions and applied cyclic stresses. Image feature param-
eters were extracted and analyzed to classify the pits/cracks in the
NAB metal samples.

2. Image analysis methods

Several image analysis methods are available for characterizing
the corrosion surface morphology. In this study, wavelet trans-
forms and fractals were used for the image analysis based on our
experience, and are described below briefly.

2.1. Wavelet packet transform

In order to improve the images obtained from microscopy
techniques such as SEM and others, multi-resolution wavelet
transforms can be used. The details of standard wavelet transfor-
mations can be found in the literature [20]. As an extension of the
standard wavelets, wavelet packets (WPs) which represent a gener-
alization of the multi-resolution analysis use the entire family of
sub-band decompositions to generate a complete representation
of images. There are many outstanding properties of wavelet pack-
ets, which encourage researchers to employ them in widespread
fields. It has been shown that sparsity of coefficients’ matrix, com-
putational efficiency, multiresolution and time–frequency analysis
can be useful in dealing with many engineering problems. The hier-
archical WP transform uses a family of wavelet functions and their
associated scaling functions to decompose the original time series/
signal into subsequent sub-bands. The decomposition process is
recursively applied to both the low and high frequency sub-bands
to generate the next level of the hierarchy.

Two-dimensional discrete wavelet packet transform (DWPT)
decomposition allows us to analyze an image simultaneously at
different resolution levels and orientations. In 2-D DWPT method,
an image is decomposed into one approximation and three detail
images. The approximation and the detail images are then decom-
posed into a second-level approximation and detail images, and
the process is repeated. The standard 2-D DWPT can be imple-
mented with a low-pass filter and a high-pass filter [20]. The 2-D
DWPT of an N �M discrete image A up to level P þ 1 ðP 6
minðlog2N; log2MÞÞ is recursively defined in terms of the coeffi-
cients at level p as follows:
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where C0
0 is the image A and k is an index of the nodes in the wave-

let packet tree denoting each sub-band. h and g are the filter coef-
ficients of low-pass and high-pass filters, respectively. Supposing
that Haar basis has been used, h ¼ f�0:7071;0:7071g; and g ¼
f0:7071;0:7071g: At each step, the image Cp

k is decomposed into
four quarter-size images Cpþ1

4k , Cpþ1
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4kþ2, andCpþ1
4kþ3: The capital let-

ters (N or M) are maximum constants defined by the image size.
However, small letters (m or n) are defined at each step. For exam-
ple, when p = 5, p can be 1, 2, 3, or 4 and so on.

The Shannon entropy in different sub-bands is computed from
the sub-band coefficient matrix as:
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where EnergypðkÞ and EntropypðkÞ are the energy and entropy of the
image projected onto the subspace at node ðp; kÞ. The entropy of
each sub-band provides a measure of the image characteristics in
that sub-band. The energy distribution has important discrimina-
tory properties for images and as such can be used as a feature
for texture classification. From the equations above, it follows that
the wavelet entropy is minimum when the image represents an or-
dered activity characterized by a narrow frequency distribution,
whereas the entropy is high when an image contains a broad spec-
trum of frequency distribution.

In this study, firstly the SEM images of the surfaces have been
transformed from TIF to JPG to export to MATLAB software. Haar
mother wavelet was employed to decompose the grayscale corro-
sion images to the second level of decomposition and Shannon
entropies of sub-images at each sub-band have been used as image
features. The process has been done using the wavelet toolbox of
MATLAB software on a Pentium Dual-Core and 1.66 GHz processor
speed PC computer.

2.2. Fractal analysis

The fractal dimension (FD) is a mathematical concept to classify
certain sets in more detail than the topological dimension can.
There are many interesting and aesthetic examples of such sets
(known as ‘‘fractal sets”) that can be created. Many scientists in life
and material sciences and engineering use the fractal dimension
(FD) as a parameter to characterize rough lines or surfaces. In other
words, the fractal dimension is a measure of the morphology, tex-
ture, and roughness in the surface (or images). FD can numerically
characterize the variation in surface structure caused by corrosion,
which corresponds to morphology changes in grey value images
captured by microscopy techniques such as SEM or AFM. Various
methods have been proposed to estimate fractal values [21]: Fou-
rier, Kolmogorov, Korcak, Minkowski, root mean square, slit island,
etc. These methods differ in computational efficiency, numerical
precision and estimation boundary. However, a strong correlation
was reported between the relative ranking of fractal values ob-
tained from different fractal measuring techniques [21,22]. Among
these methods the Fourier analytical technique is the most prom-
ising one in that it has several advantages. First, the Fourier meth-
od is relatively insensitive to the presence of noise in images;
second, there exists a fast algorithm, the FFT, which provides effi-
cient implementation particularly for online application; and third,
the computation of fractal values is based on an explicit formula
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and is potentially more accurate computationally. For these rea-
sons Fourier analysis was adopted to estimate fractal values in this
study.

For a surface image f ðx; yÞ, the power spectral density (PSD) is
calculated as:

Sðu;vÞ ¼ jFðu; vÞj2; ð4Þ

where F(u, v) is the Fourier transform of f (x, y), and u and v are the
spatial frequencies (number of waves per unit wave length) in the x
and y directions, respectively. The PSD Sðu;vÞ is converted to the
polar coordinate system S(f) such that f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. The values of
Sðf Þ, at each radial frequency f, are averaged over angular distribu-
tions. For a fractal surface, the power spectrum shows a linear var-
iation between the logarithm of Sðf Þ and the logarithm of the
frequency f [23]. The slope of the linear regression line b is related
to the FD by equation [24]:

FD ¼ ð7� bÞ=2 ð5Þ

In this study, FD analysis was carried out on SEM images of cor-
roded specimens under varying conditions with a goal of differen-
tiating pits and cracks in them.

3. Experimental data

Nickel aluminum bronze alloy metal samples were cut into
50 mm � 5 mm � 1 mm dimensions from a plate. The chemical
composition of the NAB plate (wt.%) [1] is 8.7–9.5% Al; 4.0–4.8%
Ni; 3.5–4.3% Fe; 1.2–2.0% Mn; 0.1% Si; 0.02% Pb and the rest is
Cu with an average tensile strength of 731 MPa and Rockwell B
Hardness of 203 (HRB). The NAB plate’s typical microstructure
consists of continuous equiaxed crystals with small areas of meta-
stable b phases. k Phase precipitates are found at grain boundaries
in a phase and b phases areas [1]. Initially, the specimens were
first inspected visually and diamond polished up to a surface finish
of 3 lm before the corrosion testing. These specimens were
immersed in 10% ammonia (NH4OH) (by vol.) – 90% seawater
(by vol.) prepared as per ASTM D1141 standard and the cyclic
stress was applied under three point bending according to ASTM
G39. The chemical composition of the simulated seawater is as fol-
lows: initially salt solution was prepared using salts NaCl
0.413 mol dm�3; MgCl2 0.0546 mol dm�3; Na2SO4 0.0288 mol
dm�3; CaCl2 0.0105 mol dm�3; and KCl 0.0009 mol dm�3, and dis-
solving them in 1000 mL of de-ionized distilled water. Concen-
trated ammonia solution of 100 mL was then added to 900 mL of
the salt solution to obtain the simulated.

After exposing the specimens for a specific corrosion time (1–
37 days) under specified cyclic stress (0–310 MPa), the samples
were examined under SEM to characterize the surface morphology.
The experiments were conducted by the researchers at the Depart-
ment of Alloy Development and Mechanics, Carderock Division,
Naval Surface Warfare Center, Bethesda, Maryland. They provided
the SEM image data to VCU for further analysis. An investigation
of the SEM data for defects classification was carried out in this
study. The corrosion morphology of typical NAB specimens with
defects, pits, and cracks is shown in Fig. 1. These SEM images were
used in the image analysis to develop features to characterize the
pits/cracks in NAB metal.

4. Results and discussion

4.1. Defect detection

In order to study the effect of cyclic stress on the corrosion rate
of samples, the images of samples were decomposed using 2D
wavelet packet decomposition. Shannon entropies of sub-images

were then calculated at each sub-band. Fractal dimensions of the
images as well as the Shannon entropies of wavelet packet decom-
positions of images were used as potential features. Fig. 2 shows
the Shannon entropies of four sub-images of wavelet packet
decomposition plotted against cyclic stress for samples after one
time step. It can be seen from Fig. 2 that the metal samples under
the stresses of 170, 240, and 310 MPa have higher entropies in
comparison with other samples and are most likely candidates to
have defects. Therefore, by observing the SEM images correspond-
ing to these stresses, defects, pits, and cracks can be recognized as
shown in Fig. 1. Interestingly, these findings of no cracks, and

Fig. 1. Surface morphology of corroded NAB specimens.
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cracks has been observed by Vasanth and Hays [1] in their studies
on NAB metal under varying environmental conditions.

Cyclic stress levels of 50, and 240 MPa were chosen to show the
effect of corrosion time on surface morphology of the NAB metal
samples. Fractal Dimensions of images were calculated using Eq.
(5) and plotted against corrosion time in Fig. 3. It can be seen from
Fig. 3 that the fractal dimensions of corroded images of NAB metal
specimens have a roughly increasing trend with time. Also, when
SEM images with high fractal dimensions were observed, defects
in the samples were clearly visible, whereas SEM images with
low fractal dimensions did not show any visible damage on the
surfaces of metal samples.

4.2. Crack/pit classification

The classification of cracks/pits was investigated through image
analysis of corroded specimen SEM images. The procedure used to
establish the defect classification (pits versus cracks) is shown in
Fig. 4. Twelve sub-images, six containing cracks, and six containing
pits, were analyzed. Each image’s size was 256 � 256 pixels. Fig. 5
shows the typical images containing normal, pits, crack-pit, and
cracks extracted from the entire corroded specimen under varying
time and cyclic stresses. Fractal dimensions on these images were
calculated and presented in Fig. 6. It can be seen from Fig. 6 (a) that
fractal dimension increases for cracks and pits in comparison to

Fig. 2. Shannon entropies of four sub-images calculated from wavelet image analysis with varying applied cyclic stresses of NAB specimens.

Fig. 3. Fractal dimension calculated from fractal analysis with varying corrosion
time (time step – number of corrosion days) under applied cyclic stresses.

Fig. 4. Overview of the defect classification procedure for NAB specimens.
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Fig. 5. Typical defects (normal (no defect), pits, cracks-pits, and cracks) observed in
NAB metal specimens under combined corrosion and cyclic stresses.

Fig. 6. (a) Fractal dimension and (b) Shannon entropy calculated from the images of
Fig. 5 classifying various defects.

Fig. 7. Two-dimensional projection of image features (fractal dimension and
Shannon entropy) for classifying pits/cracks in NAB metal samples.
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normal (no defect) images. Also, the images with pits have higher
fractal dimensions in comparison to images with cracks. The sam-
ples are linearly separable in this feature space and a threshold can
be chosen to distinguish cracks from pits and its transition. This
shows the effectiveness of the fractal dimension feature in the clas-
sification of corrosion cracks from pits and their transition.

In addition to fractal dimension, the Shannon entropies of the
wavelet packet decompositions of images containing normal (no
defects), pits, cracks, and combination of pit-crack cases (Fig. 5)
were also calculated. It can be seen from Fig. 6(b) that the cracks
have higher entropies in comparison to pits in comparison to nor-
mal (no defect) in their images. It has been observed that with only
increasing corrosion, there are visible pits in SEM images. In con-
trast, when the cyclic stress is increased, there are visible cracks
and pits in SEM images. To provide a better illustration, a two
dimensional projection of images (normal (no defects), pits, cracks,
and combination of pit-crack cases) into the feature space is pre-
sented in Fig. 7 for the images considered in this study. It can be
seen from Fig. 7 that using the features of fractal dimension and
Shannon entropy of the wavelet packet decomposition, cracks
and pits are linearly separable and, thus, easily classifiable.

5. Conclusions

An image analysis based on wavelet transforms and fractals was
used to study the corrosion morphology of nickel aluminum
bronze metal under varying corrosion conditions and applied cyc-
lic stresses. Image feature parameters were extracted from the
experimental data obtained from SEM, and analyzed to classify
the pits/cracks in the metal samples. The results obtained from im-
age analysis indicate that classification of pits/cracks is possible as
they are linearly separable based on the fractal dimension and en-
tropy features. The approach presented in this paper may be used
for correlating service/failure conditions based on corrosion mor-
phology in metals. However, more research is needed to study fur-
ther the proposed methods/analysis based on images obtained
from non-destructive inspection devices as part of routine inspec-
tion and correlating the fractal dimension to service/failure
conditions.
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